- nga marrim: , respektivisht se derivati i funksionit është i barabartë
Fig. 7.22.
|
- me herësin e diferencialit të funksionit me diferencialin e argumentit.
- Interpretimi gjeometrik i diferencialit të funksionit është i lidhur me tangjenten në grafikun e tij. Për këtë qëllim le të marrim në grafikun e funksionit një pikë nëpër të cilën është tërhequr tangjentja (fig. 7.22.). Këndin që formon kjo tangjente me boshtin e abshisave e shënojmë me , ku . Kur -i merrë shtesën. , shtesa përkatëse e funksionit është , ndërsa shtesa e ordinatës së tangientes është . Nga trekëndëshi kënddrejtë e përcaktojmë vlerën e kësaj shtese: . Meqenëse dhe , do të kemi:
.
- Pra, konkludojmë: diferenciali i funksionit në pikën është i barabartë me shtesën e ordinatës së tangjentes në grafikun e tij në këtë pikë.
3.10.1. Vetitë themelore të diferencialit dhe aplikimi i tij në njehsime të përafërta
- Pasi që diferenciali i funksionit në pikën përcaktohet me formulën (65a), konkludojmë se të gjitha teoremat e paraqitura në pikat e mëparshme lidhur me derivatin e funksioneve dhe rregullat e derivimit vlejnë edhe për diferencialin e funksionit. Kështu, për shembull. kemi:
- 1 °
- 2 ° ;
- 3° ;
- 4° ; etj.
- Më parë kemi theksuar se për vlera pambarimisht të vogëla të shtesës së argumentit , ndryshimi është madhësi pambarimisht e vogël e rendit më të lartë se . Nga kjo del se për vlera mjaft të vogla të shtesëN
|
|
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100+
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
200+
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
300+
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
400+
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
500+
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|