- Nga kjo barazi nxjerrim këtë sistem ekuacionesh
- prej nga marrim këto zgjidhje për parametrin dhe .
3. PROJEKSIONI DHE KOORDINATAT E VEKTORIT
3.1. PROJEKSIONI I VEKTORIT
- P ë r k u f i z i m i 3.1.1. - Projeksioni normal i vektorit në drejtëzën quhet vektori ne atë drejtëz ekstremitetet e të cilit janë projeksione normale të ekstremileteve të vektorit në drejtëzën (fig. 5.8.).
- Drejtëza e orientuar me një vektor njësh quhet bosht. Boshti i ka dy kahe: kahun pozitiv (+), i cili është i njëjtë me kahun e vektorit njësh , dhe kahun negativ (-), i cili është i kundërt me kahun e vektorit njësh .
- Meqenëse boshti karakterizohet me vektorin njësh , rëndom e quajmë bosht .
- P ë r k u f i z i m i 3.1.2. - Projeksioni normal i vektorit në boshtin quhet gjatësia e segmentit në atë bosht i cili bashkon projeksionet normale të ekstremiteteve të vektorit në boshtin e që mirret me parashenjën + apo -, varësisht se a ka vektori kahun e njëjtë apo kahun e kundërt me vektorin njësh (fig. 5.9.).
- Projeksioni i vektorit në boshtin shënohet me
ose më shkurt .
- Le të shënojmë me këndin që bartësja e vektorit e formon me kahun pozitiv të boshtit , atëherë nga (fig. 5.9.) del:
. (...7)
- Pra konkludojmë: projeksioni normal i vektorit në bosht është i barabartë me prodhimin e modulit të atij vektori me kosinusin e këndit ndërmjet vektorit dhe boshtit.
- Për rastin kur , ndërsa kur .
|
|
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100+
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
200+
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
300+
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
400+
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
500+
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|