3°. Kur në (41a) cilëndo formë lineare e shumëzojmë me numrin dhe atë ia shtojmë cilësdo formë tjetër, përsëri nuk ndryshohet numri i formave të pavarura, prandaj nuk ndryshohet as rangu i matricës .
       Të gjitha këto konstatime mund të provohen edhe me anën e submatricave katrore të matricës ,, meqë me transformime elementare submatricat regulare mbeten regulare, kurse ato singulare po ashtu mbeten singulare.


7.5. PËRCAKTIMI PRAKTIK I RANGUT TË MATRICËS
       Në p. 7.1. kemi pa se, në rastin e përgjithshëm, çfarëdo një matrice i përkasin një numër i konsiderueshëm submatricash katrore, prandaj përcaktimi i rangut të matricës nëpërmjet të submatricave katrore korresponduese është mjaft i gjatë dhe jopraktik. Të shohim tani këtu një mënyrë praktike të përcaktimit të rangut të matricës.
       Matrica e tipit të formës

quhet forma kanonike e matricës. Do të shohim se me anën e transformimeve elementare çdo matricë mund të transformohet në formën kanonike (43).
       Me këtë qëllim le të shohim matricën . Supozojmë se (në rast se ky kusht nuk plotësohet, , atëherë permutohet rreshti (shtylla) i parë me ndonjë rresht (shtyllë) tjetër, ku elementi i parë nuk është i barabartë me zero). Kur rreshtin e parë të matricës e shumëzojmë me numrin përftohet matrica ekuivalente:
       Shtyllën e parë të kësaj matrice me radhë e shumëzojmë me numrat:


< 1121
faqe
- 1122 -

1123 >

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
200+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
300+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
400+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
500+ 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40


< 1121
faqe
- 1122 -

1123 >