Dallime mes rishikimeve të "Grupi dhe nëngrupi"

No change in size ,  7 vjet më parë
{{S h e m b u l l i|21}} Grupi {{mate|(A, •)}}, ku {{mate|A{{=}}<math> \Big\{ \scriptstyle {1,} \textstyle {\frac{-1+i\sqrt{3}}{2}, \frac{-1-i\sqrt{3}}{2}} </math> <math> \Big\} </math>}} është grup ciklik me dy përlindëse:<math>\textstyle {\frac{-1+i\sqrt{3}}{2}}</math> dhe <math>\textstyle {\frac{-1-i\sqrt{3}}{2}}</math>.Vërtet: {{mate|<math>\Big( \textstyle {\frac{-1+i\sqrt{3}}{2}} \Big)^{2}= \textstyle {\frac{-1-i\sqrt{3}}{2}} , \Big( \textstyle {\frac{-1+i\sqrt{3}}{2}} \Big)^{3}= 1, \Big( \textstyle {\frac{-1+i\sqrt{3}}{2}} \Big)^{4} = \textstyle {\frac{-1+i\sqrt{3}}{2}}, </math>}} etj.
<!---------------------------------------------------------------------------------------- -->
==VetitVetitë e grupit==
Prej aksiomave (a{{sub|1}}) - (a{{sub|4}}) mund të nxjerrim këto veti të rëndësishme të grupit:
====Vetia e elementit invers====
Në grupin aditiv abelian {{mate|(A, {{o+}})}} kjo veti shprehet me formulën:
<center>{{mate|-(a {{o+}} b){{=}}(-a) {{o+}} (-b)}}.</center>
 
 
 
==Homorfizmi dhe izomorfizmi i grupit==
Anonymous user